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Image Transformations and Blurring
Justin Domke and Yiannis Aloimonos

Abstract—Since cameras blur the incoming light during mea-
surement, different images of the same surface do not contain
the same information about that surface. Thus, in general,
corresponding points in multiple views of a scene have different
image intensities. While multiple view geometry constrains the
locations of corresponding points, it does not give relationships
between the signals at corresponding locations. This paperoffers
an elementary treatment of these relationships.

We first develop the notion of “ideal” and “real” images,
corresponding to, respectively, the raw incoming light andthe
measured signal. This framework separates the filtering and
geometric aspects of imaging. We then consider how to synthesize
one view of a surface from another; if the transformation between
the two views is affine, it emerges that this is possible if andonly
if the singular values of the affine matrix are positive. Next, we
consider how to combine the information in several views of a
surface into a single output image. By developing a new tool
called “frequency segmentation” we show how this can be done
despite not knowing the blurring kernel.

Index Terms—Reconstruction, Restoration, Sharpening and
deblurring, Smoothing

I. I NTRODUCTION

This paper concerns a very basic question: What are
the relationships between multiple views of a surface? This
question is only partially answered by the geometry of the
situation. Consider two points in different images that project
to the same 3-D surface point. Even supposing the images are
perfectly Lambertian, and disregarding issues like lighting or
noise, the image intensities will still in general be different.
This is because cameras do not merelymeasurethe incoming
light. During measurement, the signal is optically filtered
or blurred. Given the finite resolution of cameras, this is
necessary to avoid aliasing effects. However, because this
blurring is fixed to the camera’s coordinate system, different
views of a surface result in different measured signals. This is
true even after correcting for the geometrical transformation
between the views.

Fig. 1 shows an example of two images of a surface,
and the results of warping them to a common coordinate
system. To understand this situation, this paper introduces a
simple formalism. We contrast between what we call the “ideal
image”, corresponding to the unblurred incoming light, and
the “real image”, corresponding to the measured signal. The
ideal image cannot be measured, but is useful for analysis
because it is immune to blurring. If the ideal image is some
function i and the real image is some functionj, we write
j = i ∗ e, wheree is the blurring kernel. (Here,i, j, and e
are all continuous functions. Assuming that the signal is low-
pass filtered appropriately,j can be reconstructed from the
discretely sampled pixels.) The advantage of this is that given
the transformation between two views, one view’s ideal image
exactly specifies the other’s. Notice that the 3-D structureof

the scene does not need to be explicitly considered, only the
resulting transformation of surfaces between different views.

Given this setup, it is easy to derive a number of theorems
about the relationships between different views. After a few
basic results, we will ask the following question: Suppose the
real imagej2 for a view is known, as well as the blurring
kernel e. Suppose also that the transformation between the
views is affine:x1 in the first view corresponds tox2 in the
second view if and only ifx2 = Ax1, whereA is a 2x2
matrix. (It is convenient to ignore translation, since thisdoes
not impact the blurring kernel.) When will it be possible to
construct the (real) image for the first view, without inverting
the blurring kernel? Our first main result is that this is possible
if and only if the singular values ofA are greater than one.
This is true independently ofe, as long as it is a circularly
symmetric low-pass filter. This theorem reduces to known
results for the special case of Gaussian blurring.

Next, we briefly discuss possible applications of the above
theorem to image matching for widely separated views. Sup-
pose that two patches are given, and one wants to check if
they might match under some affine motionA. There are three
cases of interest. First, if the singular values ofA are greater
than one, the above theorem applies: One image can be filtered
so as above to remove any information that is not present in
the other image. After filtering, if the images do match, they
should be the same. The second case, where the singular values
of A are bothlessthan one can be handled in a similar way.
However, if one singular value is greater than one, and one is
less, the situation is more complex. Nevertheless, we derive
filters that will remove the least amount of information, while
making it possible to compare the patches.

Finally, as an example of the practical use of this framework,
we consider the problem of multiple view image reconstruc-
tion. Suppose that we have several views, and the transfor-
mations between them. Now, we want to construct an output
image containing the best content from all input images. Here,
we consider this problem in the context that the blurring kernel
e is unknown(Though we will make some weak assumptions
about its form.). This is motivated by the fact that the blurring
kernel in real cameras is difficult to predict and measure, not
obeying abstractions like ideal-low-pass or Gaussian [6].Still,
it is possible to reconstruct an output image that is visiblyless
blurred than any input image. Intuitively, this is done by taking
each frequency from the image in which it is least filtered. To
do this we develop a tool we call “frequency segmentation”.
This divides up the space of frequencies into a few regions. In
each region, one input image has been least filtered. We first
apply this to the case of affine transformations, and then more
general transformations through a local linearization strategy.
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Figure 1. The motivation for this paper. (a) and (b) show two images of a surface, taken from different views. (c) and (d) show the results of warping each
image to a common coordinate system.

(a) First Image (b) Second Image. (c) First Image (Warped) (d) Second Image (Warped)

A. Previous Work

Regarding the application of multiple view image recon-
struction, we are aware of only of the paper by Wang et. al
[17]. Here, the image blurring is modeled as an ideal low-pass
filter. This leads to a linear constraint with the reconstructed
image with respect to each observed image. However, their
method is limited to the case of a known (ideal low-pass) filter,
while the focus in this paper is the case where the filtering is
unknown.

The problem of super-resolution [12] has a similar goal
to multiple view image reconstruction. Though most work
on super-resolution considers single views, some takes mul-
tiple views as input [7] [1] [4]. However, super-resolution
approaches usually explicitly model the blurring kernel and
sampling process. The goal is then essentially to invert this
process to obtain a higher resolution image. In contrast, the
present paper does not model or invert the blurring process.
While these super-resolution approaches would often have
difficulty with far-apart views, given close views, the current
method would give little improvement. It would make inter-
esting future work to combine the effects we explore here
for far-apart views with a strategy for inverting the blurring
process. We suspect that such an approach would give better
results than either strategy alone.

Other work touches on similar issues. Stone[15] was inter-
ested in the problem of shape from texture. He pointed out that
in general, a circular filter on the image will project to a non-
circular region on the surface in view. As such, he proposed
an iterative scheme for computing both the surface shape, and
a set of elliptical filters, one for each image point. These filters
would each project to an identical area on the object surface.
Each iteration consisted of an update to the shape, and then
the filters, each using the current best estimates. Later work
[16] suggested only updating the size of circularly symmetric
filters, arguing that in practice, filters projecting to different
shapes on the object surface will yield similar measurements
if the areas of projection are the same.

From a more theoretical perspective, Lindeberg [8] con-
sidered how to extend linear (symmetric) Gaussian scale-
space, arriving at the idea of affine Gaussian scale-space. The
principal observation is that affine Gaussian scale-space is
closedunder affine warpings, unlike where the image is filtered
only with a symmetric Gaussian. These ideas were later used

by Lindeberg and Gårding [8] for 3-D shape estimation from
texture. Several authors have used affine Gaussian scale space
for different applications. Ravela [13] uses an optimization
procedure to select local affine parameters at all points. This
is shown to improve performance on recognition problems.

Another area of work that has touched similar issues is
affine invariant region detection [11]. Specifically, the Harris-
Affine & Hessian Affine detectors [10] search for extrema in
the affine Gaussian scale space of an image. These extrema
should be the same for images taken under different affine
warpings.

II. SETUP

Though all proofs are quite simple, for clarity, we postpone
them to the appendix whenever they distract from the main
ideas of the paper.

A. Preliminaries

Given some functionf , and a matrixA, we will use the
notationfA to representf , warped under the motionA. That
is, fA is the function such that,

∀x, fA(x) = f(Ax). (1)

We will use lowercase letters (i, or j) to represent functions
in the spatial domain, and uppercase letters (I, or J) for the
frequency domain. Boldface letters (x) represent vectors.

Finally, we will make use of the following theorem, which
is a special case of the affine Fourier theorem [3][2].

Theorem 1 (Translation-Free Affine Fourier Theorem):

If F{f(x)} = F (u) thenF{fA(x)} = |A−1|FA−T

(u)

whereF(·) denotes the Fourier transform.
Proof: (Postponed)

B. Basic Results

Assume that we have two images of the same surface, taken
under an affine motion. Without loss of generality, assume that
the transformation sends the origin to the origin. Then ifi1
and i2 are the ideal images, there exists someA such that

x2 = Ax1 → i2(x2) = i1(x1), (2)
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or equivalently,

iA2 (x) = i1(x). (3)

Here,x1andx2 are a two dimensional vectors, andA is a
two by two matrix.

Eq. 3 makes several simplifying assumptions. First, it does
not model issues such as sensor noise. Second, if the images
are taken of a static scene from different camera positions,this
equation assumes Lambertian reflectance. Nevertheless, Eq. 3
is sufficient to study the changes to the signals introduced by
camera blurring.

Let j1 andj2 be the real, observed images. Ife is the low-
pass filter applied by the optics of the camera, the real image
is, by definition, the result of convolving the ideal image with
e.

j1(x) = [i1 ∗ e](x) (4)

j2(x) = [i2 ∗ e](x) (5)

The results in this paper are independent of the particular
form of e. However, we make two assumptions.

1) e is circularly symmetric. Formally,e(x) is a function
of |x| only. Notice that ifE(u) is the Fourier Transform
of e(x), this also implies thatE is circularly symmetric.

2) e is a monotonically decreasing low-pass filter. Formally,
if |u2| ≥ |u1|, thenE(u2) ≤ E(u1). (It is easy to show
that E will be real, sincee(x) = e(−x).)

While these assumptions are close enough to give useful
results, we note that real cameras do not have perfectly
circularly symmetric blurring, nor do they exactly obey the
assumption of translation invariance.

Notice that unlike the ideal images, the real images need
not match at corresponding points.

x2 = Ax1 6→ j2(x2) = j1(x1) (6)

The key result driving this paper is the following. Contrast
this with Eqn. 3 for the ideal images.

Theorem 2 (Affine Blurring Theorem):

jA
2 (x) = |A|[i1 ∗ eA](x) (7)

Proof: (Postponed)
When warped into the coordinate system of the first image,

the second image is equivalent to the first ideal image, con-
volved with a warped version of the low-pass filter.|A| acts as
a normalization factor so thateA integrates to the same value
ase.

Another useful result is given by taking the Fourier Trans-
form of both sides of Eqn. 7.

Theorem 3 (Fourier Affine Blurring Theorem):

F{jA
2 (x)} = [I1 · E

A−T

](u) (8)

Proof: (Postponed)

C. Affine Gaussian scale-space

As an example, suppose the blurring kernel is a Gaussian.
Eqn. 7 can be used to get the relationship betweenj1 andjA
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more explicitly. LetNΣ denote an origin-centered Gaussian
with covariance matrixΣ. Then,e = NσI .

j1(x) = [i1 ∗ NσI ](x) (9)

The following lemma specifies how a Gaussian behaves
under affine warping. (This result follows easily by substituting
Ax in place ofx in the definition of a Gaussian.)

Lemma 1:

NA
Σ (x) =

1

|A|
NA−1ΣA−T (x) (10)

From this, the following relationship follows immediately.

jA
2 (x) = [i1 ∗ NσA−1A−T ](x) (11)

Notice that the constant of|A| was absorbed into the
Gaussian. Essentially this same relationship is known in the
literature on affine Gaussian scale-space. [9]

D. Parameterization of A

ThoughA has four parameters, it turns out that there are
only three parameters of interest to us here. Consider the
following decomposition ofA [5].

A = R(θ)R(−φ)ΛR(φ) (12)

Λ =

[

λ1 0
0 λ2

]

(13)

This decomposition is visualized in Fig. 2. It will be
convenient later to make reference to the parametersθ, φ,
λ1, andλ2 without explicitly specifying that they correspond
to some matrixA.

The parameterθ has no role in the blurring behavior of the
images. Intuitively,θ is just a rotation, which has no effect on
the filtering since the low-pass filter has no preferred direction.
This is formalized in the following theorem.

Theorem 4:
jA
2 is independent ofθ.

Proof: Notice that the expression forj2 in Eqn. 7 depends
on A only through |A|, and eA. By our assumption that
e is circularly symmetric,eA(x) = e(Ax) = e(|Ax|) =
e(|ΛR(φ)x|) does not depend onθ. It is also easy to see that
|A| is independent ofθ.

III. T WO-V IEW ACCESSIBILITY

Suppose we are given onlyA andj2. A question arises: is
it possible to filterjA

2 so as to synthesizej1? As we will show
below, this is only sometimes possible.

In this paper, we want to avoid the problem of deconvo-
lution, or deblurring. In theory, if the low-pass filterE were
nonzero for all frequencies, it would be possible to increase
the magnitude of all frequencies to completely cancel out the
effects of the filtering. With the ideal image in hand, any other
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Figure 2. Visualization of the four parameters of A. We can see that the effect ofR(−φ)ΛR(φ) is to stretch by factors ofλ1, andλ2 along axes an angle
of φ away from the starting axes.

φ

(a) Initial Points.

φλ
1

λ
2

(b) After R(−φ)ΛR(φ).

φ

θ

(c) After rotation byθ.

view could be synthesized. However, in practice, this can be
done only for a limited range of frequencies, because for high
frequencies the noise in the observed image will usually be
much larger than the signal remaining after filtering [14]. If
deconvolution is practical, we can imagine that it has already
been applied, and the problem restated with an appropriately
changed blurring kernel and input images. Hence, we will not
attempt to invert the blurring kernel.

Suppose that we apply some filterd to one of the images.
If D is the Fourier Transform ofd, we require thatD does
not increase the magnitude of any frequency. Formally, for all
u, we must haveD(u) ≤ 1. (Again, D will be real. See the
discussion in the following theorem.)

We will say that a view “is accessible” from another view
taken under motionA if there exists a valid filterd such that
e = |A|eA ∗ d (Recall Eqn. 7). Notice that if this is the case,
then

[jA
2 ∗ d](x) = |A|[(i1 ∗ eA) ∗ d](x) (14)

= |A|[i1 ∗ (eA ∗ d)](x) (15)

= [i1 ∗ e](x) (16)

= j1(x). (17)

The following theorem formalizes exactly when one view
is accessible from another. It is worth sketching the proof in
some detail.

Theorem 5 (Two-View Accessibility Theorem):
j1 is accessible fromj2 if and only if λ1 ≥ 1 andλ2 ≥ 1.

Proof: We will develop several conditions, each of which
is equivalent to the assertion “j1 is accessible fromj2”. By
definition, this means there is a validd such that

∀x, [|A|eA ∗ d](x) = e(x). (18)

Apply the translation-free affine Fourier theorem toeA.

F{eA(x)} = |A−1|EA−T

(u) (19)

Now, if we also take the Fourier transform ofd ande, the
condition is, by the convolution theorem,

∀u, E(A−T u) · D(u) = E(u). (20)

SinceE is real, clearlyD must also be. Since we need that
D(u) ≤ 1 we require that for allu, E(A−T u) ≥ E(u). This
will be the case when

∀u, |A−Tu| ≤ |u|. (21)

It is not hard to show that this is equivalent toλ1 andλ2

being at least one.
Whenj1 is in fact accessible fromj2, constructing the filter

is trivial. By Eqn. 20, simply setD(u) = E(u)/E(A−T u) for
all u, and obtaind by the inverse Fourier transform. The exact
form of d will of course depend on the form ofe.

For example, supposee is a Gaussian filter. LetNΣ denote
a Gaussian function with covariance matrixΣ. We need that
NσI = NσA−1A−T ∗ d. (Recall Eqn. 11.) SinceNΣ1

∗ NΣ2
=

NΣ1+Σ2
, we can see thatd = Nσ(I−A−1A−T ). For this to be

a valid Gaussian, the covariance matrixI −A−1A−T must be
positive definite. This is true if and only if the singular values
of A are at least one, confirming the above theorem.

For another example, supposee is an ideal low pass filter.
That is, supposeE(u) = 1 when |u| < r for some threshold
r, and zero otherwise. In this case, we can used = e. The
effect is to filter out those frequencies injA

2 that are not in
j1. However, if the singular values ofA are not both at least
one, there will be some frequencies inj1 that are not injA

2 ,
and againj1 would be inaccessible.

A. Accessibility and Matching

The accessibility theorem has some possible applications to
image matching that we briefly discuss here. This section can
be skipped without loss of continuity.

Suppose imagesj1 andj2, are hypothesized to vary by some
motionA. How can this be checked? Intuitively, one could do
filtering as in the previous section to create a “possible copy”
of j1 from jA

2 , under the assumption that the image regions do
correspond. This can then be compared toj1 to determine if
the regions match. However, this may or may not be possible,
depending onA. There are three situations.

1) λ1 ≥ 1, λ2 ≥ 1. Here filtering can be done exactly as
described above.

2) λ1 ≤ 1, λ2 ≤ 1. Now, j1 is not accessible fromj2.
However, by symmetry, one can instead try to synthesize
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j2 from j1, under a hypothesized motion ofA−1. (The
singular values ofA−1 will both be at least one.)

3) Otherwise. In this situation, neither image is accessible
from the other. Intuitively, this means that both images
contain some frequencies that are reduced (or elimi-
nated) in the other image.

The first two situations can be dealt with by the methods
above, but the third needs more discussion. The problem is
how to filter the images to remove any extra information in
one image that is not present in the other. At the same time, to
match successfully, it is better to remove as little information
as possible. The goal is to create filtersd1 andd2 such that

∀x, [j1 ∗ d1](x) = [jA
2 ∗ d2](x). (22)

Consider this in the frequency domain. For the left hand
side, we have

F{j1 ∗ d1} = J1(u) · D1(u) = I1(u) · E(u) · D1(u). (23)

For the right hand side, recall the Fourier Transform ofjA
2

from Eqn. 8.

F{jA
2 ∗ d2} = I1(u) · EA−T

(u) · D2(u). (24)

So filters need to be constructed such that

∀u,E(u) · D1(u) = EA−T

(u) · D2(u). (25)

The optimal solution is to set the filters so as to minimize
the amount of information removed.

D1(u) =

{

EA
−T

(u)
E(u) if E(u) ≥ EA−T

(u)

1 if E(u) ≤ EA−T

(u)
(26)

D2(u) =

{

1 if E(u) ≥ EA−T

(u)
E(u)

EA−T (u)
if E(u) ≤ EA−T

(u)
(27)

The problem remains how to divide up the space ofu

into those whereE or EA−T

is greater. This problem will be
addressed in a more general context in Section IV.

B. Example

This example uses synthetically generated images consisting
of white noise, because the broad frequency content makes
filtering easy to see. In this case, the low pass filter is a
symmetric Gaussian. Hence,e = NσI .

In Fig. 3, the first image is observed with a motion consist-
ing of a large vertical stretch, and a mild horizontal stretch.
Since here, bothλ1 andλ2 are greater than one, the first image
is in fact accessible from the second.

IV. FREQUENCYSEGMENTATION

Suppose we have a set of images warped to a common
coordinate system,{jAi

i (x)}, as well as the set of motions
that produced those images,{Ai}. The question is: for a given
frequencyu, in what image is it least filtered? This section
develops a method to segment frequency space into labeled
regions. In each region, the label gives the index of the image
with the least filtering for that region’s frequencies.

One can write the Fourier Transform of each of the images
as the ideal image with a warped version of the low-pass filter.
(Recall Eqn. 8.)

F{jAi

i (x)} = [I · EA−T

i ](u) (28)

The problem is to determine, for eachu, for which Ai is
E(A−T

i u) maximum, or equivalently, for whichAi is |A−T
i u|

minimum. Notice that this will depend only on the “angle”
of u, and not on its magnitude; if|A−T

i u| is minimum for
someu, it will also be minimum forau, for any a. So, for
each angleθ, we would like to choose the motion such that
|A−T

i [cos θ, sin θ]T | is minimum. One can picture the situation
by drawing a curve, where for each angleθ, we use the length
|A−T

i [cos θ, sin θ]T |. (Fig 4(a)). To “carve up” the space of
frequencies, requires two steps.

1) For each pair of motionsAi and Aj , find points for
which the curves meet. That is, findu such that

|A−T
i u| = |A−T

j u|. (29)

This is equivalent to findingu such that

uT (A−1
i A−T

i − AjA
−T
j )u = 0. (30)

Notice that this does not depend on the magnitude ofu.
If we assume that either the first or second component of
u is nonzero, this can be solved by settingu = [ux, 1]T

or u = [1, uy]
T , and solving a quadratic equation.

Complex values as a solution indicate that the two curves
do not intersect.

2) Find the angles of the pointsu found in the previous
step and sort them. Now, form pairs from all adjacent
angles. This results in a sequence of pairs of angles,
< θ1, θ2 >, < θ2, θ3 >, ... < θm−1, θm >. It remains
to find the motion that has the smallest value in each
region. The simplest procedure would simply be to test
all motions, and explicitly find

argmin
i

|A−T
i

[

cos(.5(θj + θj+1)) sin(.5(θj + θj+1))
]T

|.

(31)
This works, but has a worse-case time complexity of
O(n3), wheren is the number of input images. However,
an optimization can reduce this toO(n2 log n), the
complexity of the sorting step: For each angleθj , keep
track of the motions whose intersection produced that
angle. Then, if some motionAi is minimum in the region
< θj−1, θj >, Ai will also be minimum in the region
< θj , θj+1 >, unlessθj was produced by the intersection
of Ai with some other motionAk, andAk is “smaller”
than Ai in the sense of Eqn. 31. This means that we
only need to test at most two motions in each region.
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Figure 3. A demonstration of 2-view accessibility, with an image of white noise. (a)j1. (b) j2. (c) jA
2

. Notice that there is visual content clearly visible in

jA
2

, but not inj1. (d) the filterd. (e) the result of convolvingjA
2

with d. Notice that this is almost identical toj1. For this experiment,A =

[

1.1 0
0 2.2

]

.

(a) (b) (c) (d) (e)

Figure 4. An intuitive description of Frequency Segmentation. See text for a full description.
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The entire frequency segmentation process is illustrated in Fig.
4. Part (a) shows the magnitude|A−T

i [cos θ, sin θ]T | plotted
for each angleθ. In part (b), the angles are found where the
motions “intersect”. In part (c), the shape is shown, where for
each angle, the magnitude is taken from the best motion.

V. RECONSTRUCTION WITH ANUNKNOWN KERNEL

At this point, one might proceed to extend the results of
Section III-A to the case of many views. This is certainly
possible. One could define alternate conditions to those in
the two-view accessibility theorem– rather than insistingthat
each frequency in the desired view is less filtered in the other,
the condition would be that for each frequency in the desired
view there is at least one image in which it is less filtered.
Given this, one could use frequency segmentation to build ap-
propriate filters and synthesize new views. However, this will
only be possible if the blurring kernele is known. Given the
difficulty of measuring the blurring kernel in real cameras,in
this paper we instead focus on what to do if the blurring kernel
is unknown. It might initially seem that the blurring kernel
must be known in order to do multiple view reconstruction.
However, notice that the frequency segmentation method does
not make use of the particular form ofe– only the assumption
that it is circularly symmetric and monotonically decreasing.

Still, it is impossible to synthesize a view without knowing
the blurring kernel that view is the result of. Hence, we
cannot require this as output. Instead, we simply combine the
frequencies in the input images,at their observed levels, into
one output image. This output will be visibly “less blurred”

than any input images, but does not correspond to what would
be measured from any real view. To do this, it is not necessary
to know the blurring kernel. After frequency segmentation
is done, one only needs to design a filter that will take a
certain range of frequencies from each image. This problem
is addressed in the Section VI.

It is also important to consider what will happen if our
assumptions one violated. Supposee is not exactly circularly
symmetric, or suppose that it is spatially variant. (In real
cameras these are both likely to be true to some degree.)
As long as these conditions are not dramatically violated, the
frequency segmentation boundaries will still be found nearby
the optimal ones, and hence the reconstruction will still be
similar to the optimal one.

VI. T HE FREQUENCY SLICE FILTER

The overall goal here is to create a filter which will pass
a certain range of frequencies. More specifically, givenθ1and
θ2, we would like a filterc such that, in the frequency domain
(Fig. 5(a)),

Cθ1,θ2
(u) =

{

1 θ1 ≤ argu ≤ θ2

0 else
. (32)

First, consider the case whereθ1 = 0, and θ2 = π/2.
Naively, we would just plug these values into the above equa-
tion. However, if we do this, the inverse Fourier Transform
will not converge. A convenient fact is useful here– the images
have already been low-pass filtered. Hence, it does not matter
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Figure 5. The frequency slice filter in the Fourier domain. The filter in (a) is ideal, but cannot be used in the spatial domain since its inverse Fourier
transform does not converge. (b) The filter with anglesθ1 = 0, andθ2 = π/2, and thresholdr = .5. (c) The filter with anglesθ1 = π/10, andθ2 = π/2,
and thresholdr = .5.
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what the filter does to very high frequencies. So, instead, define
(Fig. 5(b))

C0,π/2,r(u) =

{

1 0 ≤ argu ≤ π/2, and |u| ≤ r

0 else
. (33)

Before extending this to the case of otherθ1, θ2, consider
the inverse Fourier transform.

c0,π/2,r(x) =F−1{C0,π/2,r(u)} (34)

=

∫

u

C0,π/2,r(u) exp(2πiuTx)du (35)

=

∫

0≤u≤r

[exp(2πiuT
x) + exp(−2πiuT

x)]du

(36)

=

∫

0≤u≤r

2 cos(2πu
T
x)du (37)

=
1

2π2xy
[cos(2πrx) + cos(2πry) (38)

− cos(2πr(x + y)) − 1]

Examples ofc in the spatial domain are shown in Fig. 6.
Notice specifically that this function decays by the inverseof
xy, hence it has limited spatial extent. This will be important
in extending the approach to non-affine transformations. To
define the filter for arbitrary angles, define the matrixV .

V =

[

cos θ1 cos θ2

sin θ1 sin θ2

]

(39)

Now, we can define the frequency slice filter for arbitrary
angles.

cθ1,θ2,r(x) = |V |cV T

0,π/2,r(x) (40)

To see this, apply the translation-free affine Fourier theorem
to the right hand side.

F{|V |cV T

0,π/2,r(x)} = |V | · |V −T |C
(V T )−T

0,π/2,r (u) (41)

= CV −1

0,π/2,r(u) (42)

Figure 6. The frequency slice filter in the spatial domain. (a) The filter with
anglesθ1 = 0, and θ2 = π/2, and thresholdr = .5. (c) The filter with
anglesθ1 = π/10, andθ2 = π/2, and thresholdr = .5.

c
0,π/2,.5

−20 0 20

20

0

−20

(a)

cπ/10,4π/10,.5

−20 0 20

20

0

−20

(b)

Notice thatV −1 will send [cosθ1, sin θ1]
T to [1, 0]T , and

[cosθ2, sin θ2]
T to [0, 1]T . Hence only those frequencies in

the correct range of angles will be passed. Fig. 5 (c) shows
an example in the frequency domain withθ1 = π/10, θ2 =
4π/10.

Different filters could also be used to perform reconstruc-
tion. It is only necessary that the filters behave as indica-
tor functions for low frequencies. For example, instead of
“cutting” the frequencies off at the threshold ofr as done
here, the falloff could be smooth. However, we have found
that the above filter is sufficient for our experiments. For our
experiments,r was set to.3. Increasing it further does not
visibly change the results.

VII. A FFINE RECONSTRUCTION

The algorithm for affine reconstruction is given as Alg.
1. The intuition behind the method is quite simple. The
images are warped to a common coordinate system, and then
convolved with a filter calculated for each image. This filter
depends on the results of frequency segmentation. Finally,the
results of the convolutions are added together to produce the
output image.
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Algorithm 1 Affine Reconstruction
1) Input a set of images,j1, j2, ... jn, and a corresponding

set of motions,A1, A2, ... An

2) Warp each image to the central coordinate system, to
obtainjAi

i (x).
3) Use the method described in Section IV to segment

frequency space. Obtain a set of pairs of angles, along
with the best motion in that region,< θi1, θi2, Ai >.

4) Outputk =
∑

i[j
Ai

i ∗ cθi1,θi2,r] .

A. Example

Fig. 7 shows an example reconstruction, contrasted with a
simple averaging scheme. For comparison, the algorithm is
run with various subsets of the images as input. The relatively
modest improvements of the reconstruction over the input are
typical of what will be encountered in practice. However, to
give a sense of what is theoretically possible, Fig. 8 shows an
experiment with five images taken of a painting with extreme
foreshortening. In this idealized case, the improvement ofthe
reconstruction is quite dramatic.

VIII. G ENERAL RECONSTRUCTION

The theory developed thus far has all been for the case of
affine motion. We can observe, however, that it is essentially
a local process– the filters have a small area of support. It
turns out that we can extend the method to essentially arbitrary
differentiable transformations by locally approximatingthe
transformations as affine. We will give experimental results
for projective transformations, but it is simplest to first show
how to approximate a general transformation. Suppose that
some functiont(x) gives the transformation, so

if x2 = t(x1) , theni2(x2) = i1(x1). (43)

It follows that

∀x, i2(x) = i1(t
−1(x)). (44)

Now, write j2 in the usual way.

j2(x) = [i2 ∗ e](x) (45)

=

∫

x′

i1(t
−1(x − x′))e(x′)dx′ (46)

Notice here thate(x′) will be zero unlessx′ is small. So,
we will use a local approximation for the transformation.

t−1(x − x′) ≈ t−1(x) − J−1
t (x)x′ (47)

Where Jt(x) denotes the Jacobian oft, evaluated at the
point x. Substitute this in the above expression forj2.

j2(x) =

∫

x′

i1(t
−1(x) − J−1

t (x)x′)e(x′)dx′ (48)

Now, change variables. Sety = J−1
t (x)x′.

Algorithm 2 General Reconstruction
1) Input a set of images,j1, j2, ... jn, and a corresponding

set of transformations,t1, t2, ... tn

2) Warp each image to the central coordinate system, to
obtainjti

i (x).
3) For each pointx,

a) For each transformationti, compute the Jacobian
at x, Jti

(x).
b) Use the method described in Section IV to seg-

ment frequency space. Obtain a set of pairs of
angles, along with the best motion in that region,
< θi1, θi2, Jti

(x) >.
c) Setk(x) =

∑

i[j
Jti

(x)

i ∗ cθi1,θi2,r](x)

4) Outputk.

j2(x) =

∫

y

i1(t
−1(x) − y)e(Jt(x)x′)|Jt(x)|dy (49)

= |Jt(x)|[i1 ∗ eJt(x)](t−1(x)) (50)

So finally, we have a simple local approximation.

j2(t(x)) = |Jt(x)|[i1 ∗ eJt(x)](x) (51)

The method for general reconstruction is given as Algorithm
2. Conceptually, the only difference with affine reconstruction
is that the final imagek is the sum ofspatially varyingfilters
convolved with the input images.

A. Projective Reconstruction

It is most common to write a projective transformation in
homogeneous coordinates, in which case it is just a linear
transformation. Here, however, we must use non-homogeneous
coordinates. Letx1 = [x1, y1]

T and x2 = [x2, y2]
T be cor-

responding points in two images. Then, for some parameters
h1, h2, ..., h9,

x2 =
h1x1 + h2y1 + h3

h7x1 + h8y1 + h9
, (52)

y2 =
h4x1 + h5y1 + h6

h7x1 + h8y1 + h9
. (53)

The Jacobian is simply a matrix containing four partial
derivatives.

Jt(x) =

[

∂x2

∂x1

∂x2

∂y1

∂y2

∂x1

∂y2

∂y1

]

(54)

These are easily evaluated by differentiating Eqs. 52 and
53.

∂x2

∂x1
=

y1(h1h8 − h7h2) + h1h9 − h7h3

(h7x1 + h8y1 + h9)2
(55)

∂x2

∂y1
=

x1(h2h7 − h8h1) + h2h9 − h8h3

(h7x1 + h8y1 + h9)2
(56)
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Figure 7. Affine Reconstruction (Synthetically warped images)

(a) j1 (b) j2 (c) j3 (d) j4

(e) jA1

1
(f) jA2

2
(g) jA3

3
(h) jA4

4

(i) Average of jA1

1
, jA2

2
, jA3

3

and jA4

4

(j) Reconstruction fromj1 and
j2.

(k) Reconstruction fromj1, j2
and j3.

(l) Reconstruction from all im-
ages.

(m) Frequency segmentation
for j1 and j2.

(n) Frequency segmentation for
j1, j2, andj3.

(o) Frequency segmentation for
all images.

∂y2

∂x1
=

y1(h4h8 − h7h5) + h4h9 − h7h6

(h7x1 + h8y1 + h9)2
(57)

∂y2

∂y1
=

x1(h5h7 − h8h4) + h5h9 − h8h6

(h7x1 + h8y1 + h9)2
(58)

Though all experiments here will be for projective trans-
formations, a much larger class of transformations can be
locally approximated as affine. To do reconstruction for any
such transformation is it only necessary to calculate the partial
derivatives as above.

B. Making Reconstruction Faster

For affine reconstruction, the algorithm is extremely fast–
the computation is dominated by the convolutions in step 4. In
the algorithm for general reconstruction, however, the filters
are spatially varying, and need to be recalculated at each pixel.

A simple trick can speed this up. Instead of calculating the
filters for each pixel, calculate them for some small patch of
pixels. If the affine approximation is slowly changing, this
will result in no visible change to the output, while hugely
reducing the overhead for recomputing filters. However, this
strategy could introduce artifacts on some images, at the
boundary where the filters change. To reduce this, we allow
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Figure 8. Affine Reconstruction with extreme foreshortening. (Synthetically warped images)

(a) j1 (b) j2 (c) j3 (d) j4 (e) j5

(f) jA1

1
(g) jA2

2
(h) jA3

3
(i) jA4

4
(j) jA5

5

(k) Average ofjA1

1
... jA5

4
(l) Reconstruction from j1
and j2.

(m) Reconstruction fromj1,
j2 and j3.

(n) Reconstruction fromj1 ...
j4.

(o) Reconstruction from all
images.

the patches to overlap by one pixel, and use a small amount
of blending. For pixels in overlapping regions, the output is
set to the average of the results of the different filters. In our
experiments, we used patches of size 20 by 20.

C. Experiments

Figure 9 shows a reconstruction from three synthetically
generated images of a radius pattern. We compare our results
to a simple averaging process.

Figures 10 and 11 show the reconstruction process for
images taken of two different textures. After reconstruction,
for presentation, we manually segmented out the background.
To better understand how using more images leads to better
reconstruction, we also include the results of reconstruction
using only the first two of the three images.

IX. CONCLUSIONS

This paper introduced the formalism of the “ideal image”,
consisting of the unblurred incoming light, and the “real
image” consisting of the blurred, measured image. Because
this framework separates the filtering and geometrical aspects,
it makes it easy to derive several results. The notion of the
ideal image might be useful for deriving other results.

More formally, a relation between the outputs of filters
applied at corresponding patches in different views was de-
veloped. This result was used to formulate and prove the
Accessibility Theorem, which states the conditions under
which, given two images of the same scene, one is accessible
by the other (i.e., one image can be obtained by appropriately
filtering the other).We then discussed the consequences of this
result to the understanding of the space of all images of a
scene. As an application of this framework, we showed that
it is possible to perform multiple view image reconstruction,
even with an unknown blurring kernel, through the new tool
of frequency segmentation.
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Figure 10. Projective Reconstruction (Real images)
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APPENDIX

Theorem 6 (Translation-Free Affine Fourier Theorem):

If F{f(x)} = F (u) thenF{fA(x)} = |A−1|FA−T

(u).

Proof:

F{fA(x)}(u) =

∫

f(Ax)e−2πu
T
xdx (59)

Now, definex′ = Ax, and change variables.

F{fA(x)}(u) = |A−1|

∫

f(x′)e−2π(A−T
u)T

x
′

dx′ (60)

This is just the Fourier transform off , evaluated atA−Tu.

F{fA(x)}(u) = |A−1|F (A−T u) (61)

Lemma 2 (Affine Convolution Lemma):
[fA ∗ g](x) = |A−1|[f ∗ gA−1

](Ax)

Proof:
By definition,

[fA ∗ g](x) =

∫

f(Ax − Ax′)g(x′)dx′. (62)

Now, definey = Ax′. Then, we can re-write the integral.

[fA ∗ g](x) = |A−1|

∫

f(Ax − y)g(A−1y)dy (63)

= |A−1|[f ∗ gA−1

](Ax) (64)

Theorem 7 (Affine Blurring Theorem):
jA
2 (x) = |A|[i1 ∗ eA](x)

Proof:
By definition, i2(x) = iA

−1

1 (x). Hence,
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Figure 11. Projective Reconstruction (Real images.)
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jA
2 (x) = [i2 ∗ e](Ax) = [iA

−1

1 ∗ e](Ax). (65)

Now, apply the affine convolution lemma to the right hand
side.

[iA
−1

1 ∗ e](Ax) = |A|[i1 ∗ eA](A−1Ax) (66)

Theorem 8 (Fourier Affine Blurring Theorem):
F{jA

2 (x)} = [I1 · E
A−T

](u)

Proof:
Start with the result of the affine blurring theorem.

jA
2 (x) = |A|[i1 ∗ eA](x) (67)

Now, apply the affine Fourier theorem toeA.

F{eA(x)} = |A−1|EA−T

(u) (68)

The result follows from applying the convolution theorem
to both sides of the affine blurring theorem.


