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Abstract—Since cameras blur the incoming light during mea- the scene does not need to be explicitly considered, only the

surement, different images of the same surface do not coni resulting transformation of surfaces between differeatvs.
the same information about that surface. Thus, in general,

corresponding points in multiple views of a scene have diffent Given this setup, it is easy to derive a number of theorems

image intensities. While multiple view geometry constrais the about the relationships between different views. After & fe

locations of corresponding points, it does not give relatioships . . . o

between the signals at corresponding locations. This papeffers baS|c_ resultg, we W'"_aSk _the following question: Suppd@ t

an elementary treatment of these relationships. real imagej, for a view is known, as well as the blurring
We first develop the notion of “‘ideal” and “real” images, kernele. Suppose also that the transformation between the

corresponding to, respectively, the raw incoming light andthe views is affine:x; in the first view corresponds te, in the
measured signal. This framework separates the filtering and second view if and only ifxs = Ax;, where A is a 2x2

geometric aspects of imaging. We then consider how to synthize matrix. (It is convenient to ignore translation, since tises
one view of a surface from another; if the transformation betveen IX. : veni '9 ion, sl

the two views is affine, it emerges that this is possible if andnly ~NOt impact the blurring kernel.) When will it be possible to
if the singular values of the affine matrix are positive. Next we construct the (real) image for the first view, without inviegt
consider_ how to_combine the_information in sevgral views of a the blurring kernel? Our first main result is that this is ploles
surface into a single output image. By developing a new tool it 5nq only if the singular values ofl are greater than one.
called “frequency segmentation” we show how this can be done This is t ind dently of | it i ircular]
despite not knowing the blurring kernel. IS 1S rue Indepen ?n y ’,as ong as ItIs a circularly
symmetric low-pass filter. This theorem reduces to known

Index Terms—Reconstruction, Restoration, Sharpening and results for the special case of Gaussian blurring.

deblurring, Smoothing
Next, we briefly discuss possible applications of the above
|. INTRODUCTION theorem to image matching f(_)r widely separated views. SupT
. ) . pose that two patches are given, and one wants to check if
This paper concerns a very basic question: th)‘t ey might match under some affine motidnThere are three
the relationships between multiple views of a surface? Thi§geg of interest. First, if the singular values/bfire greater
question is only partially answered by the geometry of thg,, gne, the above theorem applies: One image can be filtered
situation. Consider two points in different images thai@d g, 55 ahove to remove any information that is not present in
to the same 3-D surface point. Even supposing the images gfe other image. After filtering, if the images do match, they
perfectly Lambertian, and disregarding issues like ligtor 1,4 be the same. The second case, where the singulas value
noise, the image intensities will still in general be difiet. ¢ 4 gre pothlessthan one can be handled in a similar way.
This is because cameras do not meralgasurethe inComing o\ ever, if one singular value is greater than one, and one is
light. During measurement, the signal is optically filtereghqs the situation is more complex. Nevertheless, we eeriv

or blurred. Given the finite resolution of cameras, this ijiers that will remove the least amount of information, tehi
necessary to avoid aliasing effects. However, because tmﬁking it possible to compare the patches.

blurring is fixed to the camera’s coordinate system, diffiere
views of a surface result in different measured signalss i  Finally, as an example of the practical use of this framework
true even after correcting for the geometrical transforomat we consider the problem of multiple view image reconstruc-
between the views. tion. Suppose that we have several views, and the transfor-
Fig. 1 shows an example of two images of a surfaceations between them. Now, we want to construct an output
and the results of warping them to a common coordinait®age containing the best content from all input imageseHer
system. To understand this situation, this paper introslice we consider this problem in the context that the blurringnieér
simple formalism. We contrast between what we call the ‘lidea is unknown(Though we will make some weak assumptions
image”, corresponding to the unblurred incoming light, anabout its form.). This is motivated by the fact that the bhgr
the “real image”, corresponding to the measured signal. Tkernel in real cameras is difficult to predict and measur¢, no
ideal image cannot be measured, but is useful for analysiseying abstractions like ideal-low-pass or Gaussian36ll,
because it is immune to blurring. If the ideal image is sormikis possible to reconstruct an output image that is visie$s
function ¢ and the real image is some functigh we write blurred than any input image. Intuitively, this is done blitay
j = ixe, wheree is the blurring kernel. (Herei, j, ande each frequency from the image in which it is least filtered. To
are all continuous functions. Assuming that the signal ig-lo do this we develop a tool we call “frequency segmentation”.
pass filtered appropriately, can be reconstructed from theThis divides up the space of frequencies into a few regians. |
discretely sampled pixels.) The advantage of this is thatrgi each region, one input image has been least filtered. We first
the transformation between two views, one view’s ideal imma@pply this to the case of affine transformations, and theremor
exactly specifies the other’s. Notice that the 3-D structufre general transformations through a local linearizatioatstyy.



Figure 1. The motivation for this paper. (a) and (b) show tmages of a surface, taken from different views. (c) and (dsthe results of warping each
image to a common coordinate system.

—
mcond mage

A. Previous Work by Lindeberg and Garding [8] for 3-D shape estimation from

Regarding the application of multiple view image recorfexture. Several authors have used affine Gaussian scale spa
struction, we are aware of only of the paper by Wang et. far different applications. Ravela [13] uses an optimizati
[17]. Here, the image blurring is modeled as an ideal lonspaBrocedure to select local affine parameters at all pointss Th
filter. This leads to a linear constraint with the reconstedc iS Shown to improve performance on recognition problems.
image with respect to each observed image. However, thei/Another area of work that has touched similar issues is
method is limited to the case of a known (ideal low-pass)rfilteaffine invariant region detection [11]. Specifically, therkitg

while the focus in this paper is the case where the filtering Affine & Hessian Affine detectors [10] search for extrema in
unknown. the affine Gaussian scale space of an image. These extrema

The problem of super-resolution [12] has a similar go&hOU'd be the same for images taken under different affine

to multiple view image reconstruction. Though most work/arpings.
on super-resolution considers single views, some takes mul
tiple views as input [7] [1] [4]. However, super-resolution Il. SETUP

approaches usually explicitty model the blurring kernetlan Though all proofs are quite simple, for clarity, we postpone

sampling process. The goal is then essentially to invest thhem to the appendix whenever they distract from the main
process to obtain a higher resolution image. In contrast, tijeas of the paper.

present paper does not model or invert the blurring process.

While these super-resolution approaches would often ha}xe

difficulty with far-apart views, given close views, the cemt =~ ) ) )

method would give little improvement. It would make inter- GIVen some functiory, and a matrix4, we will use the

esting future work to combine the effects we explore hefg)tago_nf to represenyf, warped under the motiod. That

for far-apart views with a strategy for inverting the blagi 1S: /* IS the function such that,

process. We suspect that such an approach would give better N

results than either strategy alone. vx, [7(x) = f(Ax). 1)
Other work touches on similar issues. Stone[15] was inter-\ye will use lowercase letters, (or 7) to represent functions

ested in the problem of shape from texture. He pointed ot tha the spatial domain, and uppercase lettdtsof .J) for the

in general, a circular filter on the image will project to a AOMrequency domain. Boldface letters)(represent vectors.

circular region on the surface in view. As such, he pl’OpOSGdFina”y’ we will make use of the following theorem, which

an iterative scheme for computing both the surface shae, 38 5 special case of the affine Fourier theorem [3][2].

a set of elliptical filters, one for each image point. Thederl  Theorem 1 (Translation-Free Affine Fourier Theorem):
would each project to an identical area on the object surface

Each iteration consisted of an update to the shape, and thedf F{f(x)} = F(u) thenF{f*(x)} = [A~|F4 ()
the filters, each using the current best estimates. Latek wor
[16] suggested only updating the size of circularly symimetr
filters, arguing that in practice, filters projecting to difént
shapes on the object surface will yield similar measurement ]
if the areas of projection are the same. B. Basic Results

From a more theoretical perspective, Lindeberg [8] con- Assume that we have two images of the same surface, taken
sidered how to extend linear (symmetric) Gaussian scalender an affine motion. Without loss of generality, assuraé th
space, arriving at the idea of affine Gaussian scale-spdee. The transformation sends the origin to the origin. Then; if
principal observation is that affine Gaussian scale-spaceandi, are the ideal images, there exists sohsuch that
closedunder affine warpings, unlike where the image is filtered
only with a symmetric Gaussian. These ideas were later used Xy = Axy — ia(x2) = i1(X1), (2)

Preliminaries

where F(-) denotes the Fourier transform.
Proof: (Postponed) [ |



or equivalently, C. Affine Gaussian scale-space

As an example, suppose the blurring kernel is a Gaussian.
i3 (x) = i1(x). (3) Egn. 7 can be used to get the relationship betwgeand j;'
more explicitly. Let Ny denote an origin-centered Gaussian

Here,x;andx, are a two dimensional vectors, anadis a with covariance matrix. Then,e = N, ;.
two by two matrix.

Eq. 3 makes several simplifying assumptions. First, it does G1(x) = [i1 * Ny1](x) 9)
not model issues such as sensor noise. Second, if the images ) - )
are taken of a static scene from different camera posittbiss, e following lemma specifies how a Gaussian behaves
equation assumes Lambertian reflectance. Nevertheless, E§Mder affine warping. (This result follows easily by sulsirig
is sufficient to study the changes to the signals introduged b N place ofx in the definition of a Gaussian.)

camera blurring. Lemma 1.
Let j; andj, be the real, observed imageselfs the low- N (x) = LNA*EA*T(X) (10)
pass filter applied by the optics of the camera, the real image Al

is, by definition, the result of convolving the ideal imagetwi From this, the following relationship follows immediately
€.

33 (%) = li1 * Noa-1a-7](x) (11)
1(x) = [in *€l(x) ) Notice that the constant ofA| was absorbed into the
Gaussian. Essentially this same relationship is known én th
_ . literature on affine Gaussian scale-space. [9]
J2(x) = [i2 * €](x) (%)
The results in this paper are independent of the particuldr Parameterization of A
form of e. However, we make two assumptions. Though A has four parameters, it turns out that there are

1) e is circularly symmetric. Formallyg(x) is a function only t_hree parameters of interest to us here. Consider the
of |x| only. Notice that ifE(u) is the Fourier Transform following decomposition of4 [5].
of e(x), this also implies thak is circularly symmetric.

2) e is a monotonically decreasing low-pass filter. Formally, A= R(O)R(-¢)AR(¢) (12)
if |uz| > |ui|, thenE(uz2) < E(u). (It is easy to show
that £ will be real, sincee(x) = e(—x).) Ao [ MO } (13)
While these assumptions are close enough to give useful L0 A

results, we note that real cameras do not have perfectlyrnis decomposition is visualized in Fig. 2. It will be

assumption of translation invariance. _ A1, and X\, without explicitly specifying that they correspond
Notice that unlike the ideal images, the real images neg§lsome matrixA.
not match at corresponding points. The parametef has no role in the blurring behavior of the
images. Intuitivelyf is just a rotation, which has no effect on
Xo = Axy A ja(x2) = j1(x1) (6) the filtering since the low-pass filter has no preferred dioec

This is formalized in the following theorem.
The key result driving this paper is the following. Contrast Theorem 4:

this with Egn. 3 for the ideal images. 43 is independent of.
Theorem 2 (Affine Blurring Theorem):

Proof: Notice that the expression fgs in Eqn. 7 depends

js (%) = |Al[ix % e*](x) (7) on A only through|A|, and e*. By our assumption that
e is circularly symmetric,e?(x) = e(Ax) = e(|Ax|) =

Proof: (Postponed) B ¢(|AR(¢)x|) does not depend of It is also easy to see that
When warped into the coordinate system of the first imagey | is independent of. m

the second image is equivalent to the first ideal image, con-
volved with a warped version of the low-pass filtet| acts as
a normalization factor so that integrates to the same value
ase.

Another useful result is given by taking the Fourier Tran
form of both sides of Eqgn. 7.

Theorem 3 (Fourier Affine Blurring Theorem):

Il. Two-VIEW ACCESSIBILITY

Suppose we are given only andj». A question arises: is
it possible to filterjs' so as to synthesizg? As we will show
soelow, this is only sometimes possible.

In this paper, we want to avoid the problem of deconvo-
lution, or deblurring. In theory, if the low-pass filtdt were
]—"{jg‘(x)} =[h .EA’T](U) (8) nonzero for all frequencies, it would be possible to inceeas
the magnitude of all frequencies to completely cancel oet th
Proof: (Postponed) m effects of the filtering. With the ideal image in hand, anyesth




Figure 2. Visualization of the four parameters of A. We cae #®t the effect ofR(—¢)AR(¢) is to stretch by factors ok, and A2 along axes an angle
of ¢ away from the starting axes.

"

(a) Initial Points. (b) After R(—¢)AR(¢). (c) After rotation byé.

view could be synthesized. However, in practice, this can beSinceFE is real, clearlyD must also be. Since we need that

done only for a limited range of frequencies, because fon higd(u) < 1 we require that for ali, E(A=Tu) > E(u). This

frequencies the noise in the observed image will usually béll be the case when

much larger than the signal remaining after filtering [14]. |

deconvolution is practical, we can imagine that it has alyea vu, [A"Tu| < |ul. (21)

been applied, and the problem restated with an appropriatel o )

changed blurring kernel and input images. Hence, we will not 't iS not hard to show that this is equivalent ig and A

attempt to invert the blurring kernel. being at least one. , , _ n
Suppose that we apply some filtérto one of the images. . V\_/h_enyl is in fact ac_cessmle fronp, constructlng}he filter

If D is the Fourier Transform of, we require thatD does 'S trivial. By Eqn. 20, simply seD(u) = E(u)/E(A™" u) for

not increase the magnitude of any frequency. Formally, lior &ll u, and obtaind by the inverse Fourier transform. The exact

u, we must haveD(u) < 1. (Again, D will be real. See the form of d will of course depend on the form et
discussion in the following theorem.) For example, supposeis a Gaussian filter. Let/ss denote

We will say that a view “is accessible” from another viev? Gaussian function with covariance matkix We need that

taken under motiod if there exists a valid filterl such that No1 = Noa-14-r +d. (Recall Egn. 11.) Sincd/y, x Ny, =

e = |Ale = d (Recall Eqn. 7). Notice that if this is the case’V=:1+3., W€ can see that = NU(I—A”_A*T)'lFothhiS to be
then a valid Gaussian, the covariance matfix A=A~ must be

positive definite. This is true if and only if the singular wab
of A are at least one, confirming the above theorem.
b« dl(x) = |A|[(i1 % €?) * d](x) (14) For another example, supposés an ideal low pass filter.
|A|[i1 * (e * d)](x) (15) Thatis, supposE(u_) =1 wh_en |u| < r for some threshold
[y + €] (x) (16) r, and zero otherwise. In this case, we can dse e. The
) effect is to filter out those frequencies jig' that are not in
= J(x). (17) j1- However, if the singular values of are not both at least
formalizes exactly when one viewne, there will be some frequenciesin that are not injs',

The following theorem o . )
is accessible from another. It is worth sketching the proof A1d @gainy: would be inaccessible.
some detail.

Theorem 5 (Two-View Accessibility Theorem): A. Accessibility and Matching

j1is acce.ssible fronjg if and only if \; 2“1 andA; > 1. _ The accessibility theorem has some possible applicatmns t
~ Proof: We will develop several conditions, each of whichmage matching that we briefly discuss here. This section can
is equivalent to the assertiony;“is accessible frony.”. By pe skipped without loss of continuity.

definition, this means there is a validlsuch that Suppose imageg and;j», are hypothesized to vary by some
A motion A. How can this be checked? Intuitively, one could do
vx, [|Ale” x d](x) = e(x). (18) filtering as in the previous section to create a “possibleytop

of j; from 53!, under the assumption that the image regions do
correspond. This can then be compareditdo determine if
_ -7 the regions match. However, this may or may not be possible,
Flet(0} = 471EY (0 (19) depen%ling oM. There are three situgtions. ’ P
Now, if we also take the Fourier transform éfand e, the 1) A1 > 1, A2 > 1. Here filtering can be done exactly as
condition is, by the convolution theorem, described above.
2) M1 <1, A2 < 1. Now, j; is not accessible fronjs.
Yu, E(A~Tu) - D(u) = E(u). (20) However, by symmetry, one can instead try to synthesize

Apply the translation-free affine Fourier theoremet®.



jo from j1, under a hypothesized motion d@f~!. (The IV. FREQUENCY SEGMENTATION

singular values ofA™"! will both be at least one.)  gyppose we have a set of images warped to a common
3) Otherwise. In this situation, _nelther image is ac?ees'béoordinate system{jg‘“ (x)}, as well as the set of motions
from t_he other. Intumvely, this means that both imagegat produced those imagesy; }. The question is: for a given
contain some frequencies that are reduced (or eliMequencyu, in what image is it least filtered? This section
nated) in the other image. develops a method to segment frequency space into labeled
The first two situations can be dealt with by the method€gions. In each region, the label gives the index of the enag
above, but the third needs more discussion. The problemvigh the least filtering for that region’s frequencies.
how to filter the images to remove any extra information in One can write the Fourier Transform of each of the images
one image that is not present in the other. At the same time a®the ideal image with a warped version of the low-pass.filter
match successfully, it is better to remove as little infotiora (Recall Eqn. 8.)

as possible. The goal is to create filteisand ds such that N e
Fix)p=11-E% |(u) (28)

Vx, [j1 * di](x) = 43" * da](x). (22) The problem is to determine, for eaeh for which A; is
E(A;Tu) maximum, or equivalently, for which; is |A; " ul

Consider this in the frequency domain. For the left han@inimum. Notice that this will depend only on the “angle”
side, we have of u, and not on its magnitude; irfA;Tu| is minimum for
someu, it will also be minimum forau, for any a. So, for

each angled, we would like to choose the motion such that

F{j1*di} = Jy(u) - Di(u) = I1(u) - E(u) - Dy(u). (23) |A; " [cos 0,sin 6] | is minimum. One can picture the situation

by drawing a curve, where for each angleve use the length

For the right hand side, recall the Fourier Transformjgf |47 ' [cos0,sin6]”|. (Fig 4(a)). To “carve up” the space of
from Egn. 8. frequencies, requires two steps.

1) For each pair of motionsi; and A4;, find points for
which the curves meet. That is, findsuch that

F{if #dp} = L(u) B4 () - Da(u). (24 . T
|A; ul = [A] . (29)
So filters need to be constructed such that This is equivalent to finding: such that
T T(A=1A-T _ A A=T\yy —
Vu,E(u) - Dy(u) = EA™" (u) - Da(u). (25) u’ (A A; AjA7 )u=0. (30)

Notice that this does not depend on the magnitude.of
The optimal solution is to set the filters so as to minimize If we assume that either the first or second component of

the amount of information removed. u is nonzero, this can be solved by settiag= [u,, 1]*
or u = [1,u,]", and solving a quadratic equation.
547 () i ) > BAT Complex values as a solution indicate that the two curves
Di(u) = { E(u) u) > 7T(u) (26) do not intersect.
1 if E(u) <E4 (u) 2) Find the angles of the points found in the previous

step and sort them. Now, form pairs from all adjacent
angles. This results in a sequence of pairs of angles,

. -T
Da(u) = {1 - ff E(u) = EjfT(“) 27) < 01,60y >, < 0,05 >,... < 01,0, >. It remains
EA-T (u) if E(u) <E* " (u) to find the motion that has the smallest value in each
region. The simplest procedure would simply be to test
The problem remains how to divide up the spaceuwof all motions, and explicitly find

into those where or EA™ " is greater. This problem will be
addressed in a more general context in Section IV.

T

argmin |A; 7 [ cos(.5(6; +0,41)) sin(.5(60; +60;41)) | |-

(31)
This works, but has a worse-case time complexity of
B. Example O(n?), yvh_ere_n is the number of ir_lput images. However,
an optimization can reduce this t0(n?logn), the
This example uses synthetically generated images cargisti complexity of the sorting step: For each angle keep

of white noise, because the broad frequency content makes track of the motions whose intersection produced that
filtering easy to see. In this case, the low pass filter is a  angle. Then, if some motiaA; is minimum in the region

symmetric Gaussian. Hence= N, ;. < 6;-1,0; >, A; will also be minimum in the region
In Fig. 3, the first image is observed with a motion consist- < 6;,0;41 >, unlesg); was produced by the intersection
ing of a large vertical stretch, and a mild horizontal stnetc of A; with some other motiomd,,, and 4, is “smaller”

Since here, both; and)\, are greater than one, the first image than A; in the sense of Egqn. 31. This means that we
is in fact accessible from the second. only need to test at most two motions in each region.



Figure 3. A demonstration of 2-view accessibility, with amaige of white noise. (a);. (b) j2. (c) jé“. Notice that there is visual content clearly visible in
1.1 0
0 22 } ’

744, but not inj1. (d) the filterd. (e) the result of convolving' with d. Notice that this is almost identical ta. For this experimentd = [

(@ (d)

Figure 4. An intuitive description of Frequency SegmentatiSee text for a full description.
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The entire frequency segmentation process is illustrat€dg. than any input images, but does not correspond to what would
4. Part (a) shows the magnitudié” Tlcos#,sin 0]7| plotted be measured from any real view. To do this, it is not necessary
for each anglé. In part (b), the angles are found where théo know the blurring kernel. After frequency segmentation
motions “intersect”. In part (c), the shape is shown, where fis done, one only needs to design a filter that will take a
each angle, the magnitude is taken from the best motion. certain range of frequencies from each image. This problem
is addressed in the Section VI.
V. RECONSTRUCTION WITH ANUNKNOWN KERNEL It is a!so important to consider 'what will happen if our
assumptions oa violated. Suppose is not exactly circularly
At this point, one might proceed to extend the results @{mmetric, or suppose that it is spatially variant. (In real
Section 1lI-A to the case of many views. This is certainlyzmeras these are both likely to be true to some degree.)
possible. One could define alternate conditions to those Ag long as these conditions are not dramatically violated, t
the two-view accessibility theorem— rather than insistingt frequency segmentation boundaries will still be found bgar

each frequency in the desired view is less filtered in therpthg,e optimal ones, and hence the reconstruction will still be
the condition would be that for each frequency in the desireghilar to the optimal one.

view there is at least one image in which it is less filtered.

Given this, one could use frequency segmentation to buid ap

propriate filters and synthesize new views. However, this wi

only be possible if the blurring kernelis known. Given the  The overall goal here is to create a filter which will pass

difficulty of measuring the blurring kernel in real camerims, a certain range of frequencies. More specifically, giveand

this paper we instead focus on what to do if the blurring kierné,, we would like a filterc such that, in the frequency domain

is unknown. It might initially seem that the blurring kerne(Fig. 5(a)),

must be known in order to do multiple view reconstruction.

However, notice that the frequency segmentation method doe Cor o (1) {1 01 <argu< b,
01,02 = .

VI. THE FREQUENCY SLICE FILTER

not make use of the particular form ef only the assumption (32)

that it is circularly symmetric and monotonically decreasi

Still, it is impossible to synthesize a view without knowing First, consider the case whefg = 0, andf; = 7/2.
the blurring kernel that view is the result of. Hence, w&laively, we would just plug these values into the above equa-
cannot require this as output. Instead, we simply combiee ttion. However, if we do this, the inverse Fourier Transform
frequencies in the input imageat their observed leveldnto  will not converge. A convenient fact is useful here— the iemg
one output image. This output will be visibly “less blurred’have already been low-pass filtered. Hence, it does not matte

0 else



Figure 5. The frequency slice filter in the Fourier domaineTiter in (a) is ideal, but cannot be used in the spatial dansce its inverse Fourier
transform does not converge. (b) The filter with angles= 0, andf2 = 7/2, and threshold- = .5. (c) The filter with angle®); = 7/10, andf2 = /2,

and threshold- = .5.

CTr/10,4r|110 CO,Tr/2,.5 Crr/1o,4n/10,.5
1 1 1
0 0 0
N 0 1 0 1 0 !

what the filter does to very high frequencies. So, instediihele Figure 6. The frequency slice filter in the spatial domaif. Tae filter with
anglesf; = 0, and 62 = «/2, and threshold- = .5. (c) The filter with

(Fig. 5(b)) anglesd; = 7/10, andf, = 7/2, and threshold- = .5.
1 0<argu<m/2, andfu| <r 02,5 €1110.4710, 5
C'0,7'r/2,7" (ll) = . (33)
0 else
Before extending this to the case of otltgr 05, consider :
the inverse Fourier transform. :
-
5 S
cO,ﬂ'/Q,r(x) =F {CO,ﬂ'/Q,r(u)} (34) <
:/ Co,r 2, (u) exp(2miu’ x)du (35) ’
u

:/ [exp(2miu’x) 4 exp(—2miu’ x)]du
0<u<r

(36) @ (b)
:/ 2 cos(2mu’ x)du 37)
0<u<r . .
1 Notice thatV—! will send [cosfy,sin6;] to [1,0]7, and
:m[cos(%m) + cos(2mry) (38)  [costy,sinby]T to [0,1]7. Hence only those frequencies in
— cos(2mr(z + 1)) — 1] the correct range of angles will be passed. Fig. 5 (c) shows
y an example in the frequency domain with = 7/10, 65 =

Examples ofc in the spatial domain are shown in Fig. 647/10.
Notice specifically that this function decays by the invesée  Different filters could also be used to perform reconstruc-

xy, hence it has limited spatial extent. This will be importartion. It is only necessary that the filters behave as indica-
in extending the approach to non-affine transformations. for functions for low frequencies. For example, instead of

define the filter for arbitrary angles, define the mairix “cutting” the frequencies off at the threshold efas done
here, the falloff could be smooth. However, we have found

— { C9Sz1 Cf)SzQ } (39) that the above filter is sufficient for our experiments. For ou
SnGy SOy experimentsy was set t0.3. Increasing it further does not
Now, we can define the frequency slice filter for arbitraryisibly change the results.

angles.
VIl. A FFINE RECONSTRUCTION

_ vT
Co1,2.r (%) = |V|CO7W/27T(X) (40) The algorithm for affine reconstruction is given as Alg.

To see this, apply the translation-free affine Fourier taeor 1. The intuition behind the method is quite simple. The
to the right hand side. images are warped to a common coordinate system, and then
convolved with a filter calculated for each image. This filter
Fviey” — Wl v-TievVhH " a1 depends on the resultg of frequency segmentation. Firtlady,
{IVleo n/2.r ()} V-] | 0.m/2r (w) (1) results of the convolutions are added together to produee th

= C(‘)/,;/lQ,r(u) (42) output image.



Algorithm 1 Affine Reconstruction Algorithm 2 General Reconstruction
1) Input a set of imagegy, js, ... jn, and a corresponding 1) Input a set of imagegy, jo, ... jn, and a corresponding

set of motions, Ay, A,, ... A, set of transformationg,;, to, ... t,
2) Warp each image to the central coordinate system, to2) Warp each image to the central coordinate system, to
obtain j* (x). obtain ;¥ (x).

3) Use the method described in Section IV to segment3) For each poink,
frequency space. Obtain a set of pairs of angles, along  a) For each transformatiot), compute the Jacobian
with the best motion in that regionr; 6,1, 6;2, A; >. atx, Ji, (x).
4) Outputk = 37,[5" % o,y 0.0.1] - b) Use the method described in Section IV to seg-
ment frequency space. Obtain a set of pairs of
angles, along with the best motion in that region,
A. Example < i, Oiz, Je, (x) >.

Jes (x

Fig. 7 shows an example reconstruction, contrasted with a €) Seth(x) =25l " * o 0i.r](%)
simple averaging scheme. For comparison, the algorithm is4) Outputk.
run with various subsets of the images as input. The relgtive
modest improvements of the reconstruction over the inpait ar
typical of what will be encountered in practice. However, to
give a sense of what is theoretically possible, Fig. 8 shaws a
experiment with five images taken of a painting with extreme J2(x)
foreshortening. In this idealized case, the improvemerihef _ Te(x)7 /g1
reconstruction is quite dramatic. = [Je(x)[[ir * ™) (67 (x)) (50)

So finally, we have a simple local approximation.

[ 167160 = et 0% )y (49)

VIIl. GENERAL RECONSTRUCTION

. _ . Je(x
The theory developed thus far has all been for the case of J2(6(x)) = |Je(x) [i1 * ™) () (51)

affine motion. We can observe, however, that it is esseptiall The method for general reconstruction is given as Algorithm
a local process— the filters have a small area of SuPport-Zl.tConceptually, the only difference with affine reconstiarc

turns out that we can extend the method to essentially aritr j5 that the final imagé is the sum ofspatially varyingfilters
differentiable transformations by locally approximatitive 5nvolved with the input images.

transformations as affine. We will give experimental result
for projective transformations, but it is simplest to firsioss o _
how to approximate a general transformation. Suppose tiat Projective Reconstruction

some functiont(x) gives the transformation, so It is most common to write a projective transformation in
homogeneous coordinates, in which case it is just a linear
if xo = t(x1) , thenis(xz) = i1(x1). (43) transformation. Here, however, we must use non-homogeneou
coordinates. Letk; = [z1,y1]7 andxs = [z2,y2]7 be cor-
It follows that responding points in two images. Then, for some parameters
hi, ha, ..., ho,
Vx, ia(x) = i1 (t 7 (x)). (44)
o hizy + hayr + hs (52)
Now, write j, in the usual way. > 7 hoxi + hsyr + ho
’ ‘ _ hazy + hsyr + he (53)
j2(%) = liz*e](x) (45) V27 han + hsyr + ho
= / i1(t7H(x — x))e(x)dx’ (46) The Jacobian is simply a matrix containing four partial
x! derivatives.
Notice here that(x’) will be zero unlesx’ is small. So, ) 5
we will use a local approximation for the transformation. 3= 52
PP Jy(x) = l D o (54)
Ox1 Oy

tfl - ~ tfl _ 71 / 47
(x = x) () = Je (x)x (47) These are easily evaluated by differentiating Eqgs. 52 and

Where J;(x) denotes the Jacobian of evaluated at the 53.

oint x. Substitute this in the above expression fer
p p j 8172 o yl(h,lhg - h,7h2) + hlhg — h7h3

ory (h7x1 + hgy1 + hg)?

(55)
Ja(x) = / i1 (67 (x) — J;H(x)x )e(x)dx!  (48)
x! 6:02 o Il(h2h7 - hgh,l) + thg — hghg

Now, change variables. Sgt= J, ! (x)x’. oy (hrx1 + hgy1 + ho)?

(56)



Figure 7. Affine Reconstruction (Synthetically warped iras)g

(i) Average of j't, 52, 44 J . )d '
andgf J2. andjs. ages.

y

(m) Frequency segmentation (n) Frequency segmentation for (o) Frequency segmentation for
for 51 and jo. 71, j2, andys. all images.

B. Making Reconstruction Faster
9y _ y1(hahs — hrhs) + hahg — hrhe
0z (h7y + hgy1 + hg)?

(57) For affine reconstruction, the algorithm is extremely fast—
the computation is dominated by the convolutions in stem4. |
the algorithm for general reconstruction, however, therslt

0ya  x1(hshy — hgha) + hshe — hghg are spatially varying, and need to be recalculated at eah. pi
o1 - (k71 + hsy1 + ho)? (58) A simple trick can speed this up. Instead of calculating the
filters for each pixel, calculate them for some small patch of
Though all experiments here will be for projective transpixels. If the affine approximation is slowly changing, this
formations, a much larger class of transformations can &l result in no visible change to the output, while hugely
locally approximated as affine. To do reconstruction for amgducing the overhead for recomputing filters. Howeves thi
such transformation is it only necessary to calculate thégba strategy could introduce artifacts on some images, at the
derivatives as above. boundary where the filters change. To reduce this, we allow
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Figure 8. Affine Reconstruction with extreme foreshortgni(Synthetically warped images)

@41 (b) j2 (©) js (d) ja (€) js

® i

(k) Average ofjf‘1 jf5 () Reconstruction from j;(m) Reconstruction fromy;;,(n) Reconstruction from; ...(0) Reconstruction from all
and jo. j2 andjs. ja. images.

the patches to overlap by one pixel, and use a small amounMore formally, a relation between the outputs of filters
of blending. For pixels in overlapping regions, the outmut iapplied at corresponding patches in different views was de-
set to the average of the results of the different filters.un oveloped. This result was used to formulate and prove the
experiments, we used patches of size 20 by 20. Accessibility Theorem, which states the conditions under
which, given two images of the same scene, one is accessible
by the other (i.e., one image can be obtained by appropyiatel
C. Experiments filtering the other).We then discussed the consequencéssof t

Figure 9 shows a reconstruction from three syntheticalf§Sult 10 the understanding of the space of all images of a
generated images of a radius pattern. We compare our resgfigne- AS an application of this framework, we showed that
to a simple averaging process. it is possible to perform multiple view image reconstruotio

Figures 10 and 11 show the reconstruction process fyen with an unknown plurring kernel, through the new tool
images taken of two different textures. After reconstitti of frequency segmentation.
for presentation, we manually segmented out the background
To better understand how using more images leads to better X. ACKNOWLEDGEMENTS
reconstruction, we also include the results of reconstinct

X A . The support of (a) NSF under a collaborative project with
using only the first two of the three images.

Stanford University (EMT Bioinspired computing) and (b)
the European Union’s 7th Framework program on Cognitive
IX. CONCLUSIONS Systems under the project POETICON, is gratefully acknowl-
edged.
This paper introduced the formalism of the “ideal image”,
consisting of the unblurred incoming light, and the “real
image” consisting of the blurred, measured image. Because
this framework separates the filtering and geometricalaspe [ B Bascle, A Blake, and A. Zisserman. Motion deblurriagd super-
it makes it easy to derive several results. The notion of thg, ge sed ; \bag ' .

: " : e R. N. Bracewell. Two-dimensional imagingPrentice-Hall, Inc., Upper
ideal image might be useful for deriving other results. Saddle River, NJ, USA, 1995.
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APPENDIX
Theorem 6 (Translation-Free Affine Fourier Theorem):

If F{f(x)} = F(u) then F{f4(x)} = |A‘1|FA_T(u).

Proof:

FUA) () = / fAx)e ™ xax  (59)

Now, definex’ = Ax, and change variables.

FUA)} () = A7) / F)e 2 AT gy (60)

This is just the Fourier transform df, evaluated atd~"u.

(€) ja2

(h) Reconstuction fromy; and j2.

® ja

(i) Reconstuction fromyy, j2, andjs.

FUA)} ) = [ATF(A ) (61)
[ |
Lemma 2 (Affine Convolution Lemryla):
[f4*gl(x) = [A7H[f % g™ ](Ax)
Proof:
By definition,
g0 = [ Flax— Ax)glx)ax. (62)

Now, definey = Ax’. Then, we can re-write the integral.

FAagl) = [47Y / F(Ax — y)g(A~ly)dy (63)
= AT [f*g? ](Ax) (64)
[ |

Theorem 7 (Affine Blurring Theorem):
g3 (x) = [A|[ir * "] (x)
Proof:

By definition, i»(x) = i# " (x). Hence,
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Figure 11. Projective Reconstruction (Real images.)

(CVIVR (b) j2 (©) js

(9) Average ofjf‘l, j;‘2, and jé“"‘ (h) Reconstuction fromj; and js. (i) Reconstuction fronyy, j2, andjs.
. . A1
J3'(x) = [iz % ] (Ax) = it * €](Ax). (65)
Now, apply the affine convolution lemma to the right hand
side.
i % e)(Ax) = |A[[i1 * e](A™" Ax) (66)
|

Theorem 8 (Fourier Affine BIurringTTheorem):
Fljs(x)} = [L- B (u)

Proof:
Start with the result of the affine blurring theorem.

g3 (x) = |A|[i1 x e*](x) (67)
Now, apply the affine Fourier theorem td'.
Flet(x)} = [ATEY (u) (68)

The result follows from applying the convolution theorem
to both sides of the affine blurring theorem. [ |



